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1. Introduction

Galactic cosmic rays (GCRs) constitute a major radiation hazard for deep-space human explo-
ration to the Moon, Mars, and beyond. GCRs vary on different time scales: from a few days, driven
by short-term solar wind disturbances, to the well known 11- and 22-year solar cycles, to even longer
periodicities. Studying the time dependence of GCRs is paramount to a better understanding of the
origin of the solar activity and to predicting variations in the space environment. The amount of
data collected and of theoretical developments since the beginning of the space age allowed for great
progress in understanding the spatial and time variation of GCRs, especially in the vicinity of Earth.
However, a number of key open questions such as the nature of the global heliospheric turbulence
still remain, inhibiting our ability to make physics-based long-term predictions of radiation levels
outside a spacecraft.

After entering the heliosphere, GCRs are advected by the solar wind, scatter on the helio-
spheric magnetic field (HMF) irregularities, drift along the HMF curvature, gradients, and the
wavy heliospheric current sheet (HCS), adiabatically lose/gain energy due to solar wind expan-
sions/contractions, and experience shocks at various boundaries [1, 2]. The relation between the
HMF turbulence and diffusion coefficients, in particular the rigidity behavior of the parallel and per-
pendicular mean free paths, depends on the chosen diffusion theory and turbulence geometry [3, 4].

Here we analyze the long-term variations of GCR protons near Earth measured directly in space
during solar cycles 24 and 25 by the PAMELA and AMS-02 experiments. Monthly averaged data are
fit to spectra obtained from a 3D steady-state finite-difference model [5–8], using a Markov Chain
Monte Carlo (MCMC) technique to estimate a posterior probability density function (PDF) over the
free parameters of the model. We speed up the MCMC inference by training a neural network (NN)
that approximates the numerical model output, using a coarse grid of known solutions as training
data to predict the GCR spectra from model parameters.

2. Numerical model for GCR propagation in the heliosphere

2.1 Heliospheric magnetic field, current sheet, and diffusion tensor

The HMF implemented in this model is the Parker field as modified by [9], while the HCS is
implemented as in [10].

The rigidity dependence of the parallel diffusion coefficient (DC) is approximated by a double
power-law with a smooth change of slope, while the radial dependence is assumed to be inversely
proportional to the magnitude of the HMF:

𝑘 ∥ = 𝑘0
∥ 𝛽
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𝐵
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where 𝑘0
∥ is a normalization factor, 𝑅𝑘 is the rigidity at which the transition between the two power-

laws happens, 𝑎 and 𝑏 are, respectively, the slopes of the low- and high-rigidity power-laws, and 𝑠

controls the smoothness of the transition. This parametrization reproduces the rigidity dependence
predicted by quasi-linear theory[3]. The perpendicular diffusion coefficients are assumed to be
proportional to the parallel diffusion coefficient, 𝑘⊥,𝑟 = 𝑘0

⊥,𝑟 𝑘 ∥ and 𝑘⊥, 𝜃 = 𝑢(𝜃)𝑘0
⊥, 𝜃 𝑘 ∥ , where
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𝑘0
⊥,𝑟 and 𝑘0

⊥, 𝜃 are scaling factors of the order of percent, while 𝑢(𝜃) is a smooth transition function
that enhances the perpendicular diffusion in the polar regions, tuned to reproduce cosmic ray
observations at higher latitudes by the Ulysses spacecraft [11]. The rigidity slopes of the parallel
and perpendicular diffusion coefficients are not constrained to be the same, as expected by the
non-linear guiding center theory [4].

The drift coefficient is defined as:

𝑘𝐴 = 𝑘0
𝐴

𝛽𝑅

3𝐵
(𝑅/𝑅𝐴)2

1 + (𝑅/𝑅𝐴)2 , (2)

where 𝑘0
𝐴

is a normalization factor that can be used to reduce the overall drift effects, while 𝑅𝐴 is
the rigidity below which the drift is suppressed due to scattering [12].

2.2 Solar wind

The solar wind velocity profile is assumed to be separable in a radial and latitudinal component:
V𝑠𝑤 (𝑟, 𝜃) = 𝑉0𝑉𝑟 (𝑟)𝑉𝜃 (𝜃)r̂. The radial component describes the fast rise to supersonic speed
within the first 0.3 AU from the Sun and the transition to subsonic speed at the termination shock,
while the latitudinal term describes the transition between the slow (equatorial) and fast (polar)
component of the solar wind:

𝑉𝜃 (𝜃) =


𝑉𝑁 +𝑉𝑒𝑞

2
−
𝑉𝑁 −𝑉𝑒𝑞

2
tanh [3 (𝜃′ + 𝛿)] , 0 < 𝜃 < 𝜋/2

𝑉𝑆 +𝑉𝑒𝑞

2
+
𝑉𝑆 −𝑉𝑒𝑞

2
tanh [3 (𝜃′ − 𝛿)] , 𝜋/2 < 𝜃 < 𝜋

(3)

where 𝑉𝑁 , 𝑉𝑆 , and 𝑉𝑒𝑞 are, respectively, the North-pole, South-pole, and equatorial solar wind
speed components, 𝜃′ = 𝜃 − 𝜋/2, and 𝛿 is the angle at which the transition between the equatorial
and polar streams begins, here set to be equal to the tilt angle in each analyzed time interval.

The parametrization of the latitudinal dependence of the solar wind in Equation 3 is based
on Ulysses measurements during the three fast latitude scans in 1994–1995, 2000–2001, and
2007–2008 [13]. However, these observations don’t cover the full period of the PAMELA and
AMS-02 data (2006 – 2019). Here we rely on the solar wind latitudinal structure inferred by
IPS observations conducted by the Institute for Space-Earth Environmental Research in Nagoya,
Japan [14, 15] following the methodology proposed by [16]1. The availability of in-situ data in the
ecliptic (OMNI) and outside of the ecliptic (Ulysses) allows to cross-calibrate IPS measurements,
yielding an average uncertainty of about 50 km/s.

Figure 1 shows a comparison of our latitudinal solar wind profile (top right) with the one
derived from IPS measurements (top left).

3. Bayesian inference

For each observed time interval (Carrington rotations for PAMELA, Bartels rotations for AMS-
02), we fix the value of tilt angle, HMF at Earth, and polar solar wind speed to their 1-year backward

1An updated dataset, extending the one in [16] from 1985 to 2019, was obtained from Justyna M. Sokół (private
communication, August 2019).

3



Global transport of GCRs in SCs 23 and 24 Claudio Corti

Figure 1: Top left: Solar wind latitudinal profile derived from IPS measurements. Top right: Reconstructed
solar wind latitudinal profile (Eq. 3). Bottom left: Pull distribution of the reconstructed solar wind latitudinal
profile. Bottom right: Fitted North and South solar wind speeds, together with the total and hemispheric
CR-averaged sunspot number. The normalized 𝜒2 is shown in the small panel below.

average. We use a MCMC sampling strategy to infer a PDF over the model free parameters: 𝑘0
∥ ,

𝑎 ∥ , 𝑏 ∥ , 𝑎⊥, 𝑏⊥. If 𝜽 is the vector of the model parameters, then 𝑃(𝜽 |data) is the posterior PDF of
the parameters conditioned to the observed data, which can be calculated with Bayes theorem as:

𝑃(𝜽 |data) = 𝑃(data|𝜽) 𝑃(𝜽)
𝑃(data) , (4)

where 𝑃(data|𝜽) is the probability of the observed data conditioned to a specific set of parameters
(likelihood), 𝑃(𝜽) is the prior probability of the parameters, and 𝑃(data) is a normalization factor
that does not depend on the parameters. The likelihood is defined as exp(−𝜒2(𝜽)/2), where 𝜒2 is
the standard chi-squared between a model solution and a specific dataset.

In [17] a NN surrogate model is used to speed up intermediate evaluations of Hamiltonian
Monte Carlo (HMC). Here, instead, we use a NN surrogate model to perform all the likelihood
evaluations. This is motivated by two facts: (1) the neural network is faster to evaluate than the
numerical simulation; and (2) the neural network can be used to compute gradients for HMC. We
use a NN trained using the elegy [18] package for jax [19]. The model has three hidden layers
of SELU (scaled exponential linear unit) activation [20] and a linear output layer. The input layer
corresponds to model parameters used to describe the heliosphere (solar magnetic polarity, tilt
angle, HMF intensity at 1 AU, and solar wind polar speed) and the DC (normalization of parallel
DC, low- and high-rigidity slopes for parallel and perpendicular DCs). The output layer corresponds
to the rigidity spectrum at 1 AU in 32 steps from 0.2 to 200 GV.

4
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HMC samples are generated using the No U-Turn Sampler (NUTS) [21] implemented in
Tensorflow Probability [22]. We note that the diffusion coefficient parameters are constrained to be
in a physical range. This was done using an unnormalized prior distribution that is uniform in the
domain of the training data, and exponentially decays in every direction outside that domain. This
was effective in preventing the HMC from wandering beyond the input region for which we trust
the NN, but it is an artificial constraint on the HMC. Autocorrelation plots show that the generated
samples have very little correlation after 50 steps. Thus, no thinning was used for our sample.

Figure 2 shows an example of the PDFs of the free parameters obtained with the HMC.
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Figure 2: 2D and 1D PDFs of the diffusion coefficient parameters obtained from the HMC for GCR protons
measured by AMS-02 in 2014/09/11–2014/10/07. The top right panel shows a comparison of the maximum
likelihood NN model with observations, together with the 68% and 95% credible intervals.

The PDF is very narrow for the normalization of the DC and for the slopes of the perpendicular
DC, meaning that these parameters are well constrained by the data, while it is wider for the slopes
of the parallel DC, meaning that these parameters are not well constrained by the data. This is
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expected, as parallel diffusion dominates the GCR transport in the inner heliosphere, while in
the outer heliosphere, where the majority of the modulation takes place, perpendicular diffusion
dominates. These preliminary results are in agreement with what found in [7] using an ordinary
least-square minimization procedure on the same AMS-02 data and numerical model.

4. Results

Figure 3 shows the time dependence of the parameters inferred from the HMC on the GCR
protons measured by AMS-02 between May 2011 and October 2019, together with their 68%
credible intervals. The normalization of the DC mostly fluctuates around 600 · 1020 cm2/s until
2015, when it starts to steadily increase up to a maximum in 2017. After, it slowly decreases and
become constant in 2019–2020, around a level roughly 40% higher than in 2011–2014. The slopes
of the parallel DC are not very much constrained over all the time range, but they seem to be constant
in time, except possibly during 2014 and 2015. The slopes of the perpendicular DC are instead very
well constrained and have a different time dependence: the slope above 5 GV increases from 2011
to 2014, then decreases until 2019–2020 to a lower value than in 2011; the slope below 5 GV is
mostly constant until mid 2013, decreases with various fluctuations until 2017, and then rise again
till 2018 to a lower value than in 2011–2013.
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Figure 3: Time dependence of the parameters inferred from the HMC. For reference, in the first panel the
sunspot number and the 1-year backward averaged tilt angle and HMF intensity at 1 AU are shown.

According to quasi-linear theory [3], the rigidity slope of the parallel DC is related to the
slope of the HMF power spectrum: 𝑃(𝑘) ∝ 𝑘−𝛼 −→ 𝜆 ∥ ∝ 𝑅2−𝛼, where 𝑘 is the HMF spectrum
wave number and 𝜆 the diffusion mean free path. Similarly, according to non-linear guiding center
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theory [23], there is a relation between the rigidity slope of the perpendicular DC and the slope of
the HMF power spectrum: 𝜆⊥ ∝ 𝜆

𝛽

∥ −→ 𝜆⊥ ∝ 𝑅𝛽 (2−𝛼) . Typically, the HMF spectrum is a broken
power-law in 𝑘: 𝑘−𝛼𝐻 at low wave numbers corresponding to high rigidities; and 𝑘−𝛼𝐿 at high
wave numbers corresponding to low rigidities, with 𝛼𝐿 > 𝛼𝐻 , such that the power spectrum falls
at larger spatial scales. This would imply 𝑎⊥ < 𝑏⊥. However, as shown in Figure 3, we observe
𝑎⊥ > 𝑏⊥ between 2013 and 2017, i.e., during the solar maximum and decreasing phase of SC24.
Taken at face value, this result would suggest that the HMF power spectrum is increasing at larger
spatial scales, which is very unlikely. This indicates either a limitation of the steady-state approach
during solar maximum, or a non trivial relation between the HMF power spectrum and the rigidity
dependence of the mean free path different from what turbulence theory predicts, or a combination
of both.

Song et al. reproduced PAMELA and AMS-02 GCR protons with a 3D time-dependent SDE
model [24], finding 𝑎⊥ > 𝑏⊥ before 2011 and after 2016, i.e., during the solar minimum and
increasing phase of SC24. A more careful comparison of the model ingredients is needed to
understand this discrepancy.
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